top of page

2023

(1)    Zhang, J.; Zhang, W.; Wei, H.; Tang, J.; Li, D.; Xu, D. Flexible Micro Thermoelectric Generators with High Power Density and Light Weight. Nano Energy 2023, 105, 108023. https://doi.org/10.1016/j.nanoen.2022.108023.
(2)    Li, S.; Li, Z.; Xu, D.; Feng, G.; Hu, R. Porosity and Tortuosity: Keys for Accurate Modeling of Porous Electrodes in Supercapacitors. Mater. Today Phys. 2023, 36, 101174. https://doi.org/10.1016/j.mtphys.2023.101174.
(3)    Li, M.; Xiong, Y.; Wei, H.; Yao, F.; Han, Y.; Du, Y.; Xu, D. Flexible Te/PEDOT:PSS Thin Films with High Thermoelectric Power Factor and Their Application as Flexible Temperature Sensors. Nanoscale 2023, 15 (26), 11237–11246. https://doi.org/10.1039/D3NR01516E.
(4)    Han, Y.; Wei, H.; Du, Y.; Li, Z.; Feng, S.-P.; Huang, B.; Xu, D. Ultrasensitive Flexible Thermal Sensor Arrays Based on High-Thermopower Ionic Thermoelectric Hydrogel. Adv. Sci. 2023, 10 (25), 2302685. https://doi.org/10.1002/advs.202302685.

2022

(5)    Yao, F.; Xia, S.; Wei, H.; Zheng, J.; Yuan, Z.; Wang, Y.; Huang, B.; Li, D.; Lu, H.; Xu, D. Experimental Evidence of Superdiffusive Thermal Transport in Si0.4Ge0.6 Thin Films. Nano Lett. 2022, 22 (17), 6888–6894. https://doi.org/10.1021/acs.nanolett.2c01050.
(6)    Han, Y.; Zhang, J.; Hu, R.; Xu, D. High-Thermopower Polarized Electrolytes Enabled by Methylcellulose for Low-Grade Heat Harvesting. Sci. Adv. 2022, 8 (7), eabl5318. https://doi.org/10.1126/sciadv.abl5318.
(7)    Yu, X.; Yao, F.; Huang, W.; Xu, D.; Chen, C. Enhanced Radiative Cooling Paint with Broken Glass Bubbles. Renew. Energy 2022, 194, 129–136. https://doi.org/10.1016/j.renene.2022.05.094.
(8)    Wei, H.; Zhang, J.; Han, Y.; Xu, D. Soft-Covered Wearable Thermoelectric Device for Body Heat Harvesting and on-Skin Cooling. Appl. Energy 2022, 326, 119941. https://doi.org/10.1016/j.apenergy.2022.119941.
(9)    Tang, J.; Liu, Y.; Huang, B.; Xu, D. Enhanced Heat Transfer Coefficient of Flow Boiling in Microchannels through Expansion Areas. Int. J. Therm. Sci. 2022, 177, 107573. https://doi.org/10.1016/j.ijthermalsci.2022.107573.
(10)    Tang, H.; Li, Y.; Yin, J.; Yang, J.; Xu, D.; Li, D. Nonmetallic Power-Law Behavior of Conductance in Ni-Doped NbSe3 Nanowires. Mater. Today Phys. 2022, 27, 100770. https://doi.org/10.1016/j.mtphys.2022.100770.

Before 2022

(11)    Meng, T.; Sun, Y.; Tong, C.; Zhang, P.; Xu, D.; Yang, J.; Gu, P.; Yang, J.; Zhao, Y. Solid-State Thermal Memory of Temperature-Responsive Polymer Induced by Hydrogen Bonds. Nano Lett. 2021, 21 (9), 3843–3848. https://doi.org/10.1021/acs.nanolett.1c00289.
(12)    Xiong, Y.; Zhou, G.; Lai, N.-C.; Wang, X.; Lu, Y.-C.; Prezhdo, O. V.; Xu, D. Chemically Switchable N-Type and p-Type Conduction in Bismuth Selenide Nanoribbons for Thermoelectric Energy Harvesting. ACS Nano 2021, 15 (2), 2791–2799. https://doi.org/10.1021/acsnano.0c08685.
(13)    Xiong, Y.; Zhao, Y.; Tao, Y.; Yao, F.; Li, D.; Xu, D. Effective Lorenz Number of the Point Contact between Silver Nanowires. Nano Lett. 2020, 20 (12), 8576–8583. https://doi.org/10.1021/acs.nanolett.0c03163.
(14)    Zhao, Y.; Fitzgerald, M. L.; Tao, Y.; Pan, Z.; Sauti, G.; Xu, D.; Xu, Y.-Q.; Li, D. Electrical and Thermal Transport through Silver Nanowires and Their Contacts: Effects of Elastic Stiffening. Nano Lett. 2020, 20 (10), 7389–7396. https://doi.org/10.1021/acs.nanolett.0c02014.
(15)    Xiong, Y.; Lai, N.-C.; Lu, Y.-C.; Xu, D. Tuning Thermal Conductivity of Bismuth Selenide Nanoribbons by Reversible Copper Intercalation. Int. J. Heat Mass Transf. 2020, 159, 120077. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120077.
(16)    Wei, H.; Tang, J.; Xu, D. Effect of Abnormal Grain Growth on Thermoelectric Properties of Hot-Pressed Bi0. 5Sb1. 5Te3 Alloys. J. Alloys Compd. 2020, 817, 153284. https://doi.org/10.1016/j.jallcom.2019.153284.
(17)    Wei, H.; Tang, J.; Wang, H.; Xu, D. Enhanced Power Factor of N-Type Bi 2 Te 2.8 Se 0.2 Alloys through an Efficient One-Step Sintering Strategy for Low-Grade Heat Harvesting. J. Mater. Chem. A 2020, 8 (46), 24524–24535. https://doi.org/10.1039/D0TA08059D.
(18)    Hu, R.; Xu, D.; Luo, X. Liquid Thermocells Enable Low-Grade Heat Harvesting. Matter 2020, 3 (5), 1400–1402. https://doi.org/10.1016/j.matt.2020.10.008.
(19)    Xiong, Y.; Yu, X.; Huang, Y.; Yang, J.; Li, L.; Yang, N.; Xu, D. Ultralow Thermal Conductance of the van Der Waals Interface between Organic Nanoribbons. Mater. Today Phys. 2019, 11, 100139. https://doi.org/10.1016/j.mtphys.2019.100139.
(20)    Tang, H.; Yan, X.; Xiong, Y.; Dou, K.; Zhao, Y.; Jie, J.; Wang, X.; Fu, Q.; Yang, J.; Lu, M. Quantum Transport Characteristics of Heavily Doped Bismuth Selenide Nanoribbons. Npj Quantum Mater. 2019, 4 (1), 1. https://doi.org/10.1038/s41535-018-0142-z.
(21)    Liu, Y.; Tang, J.; Li, L.; Shek, Y. N.; Xu, D. Design of Cassie-Wetting Nucleation Sites in Pool Boiling. Int. J. Heat Mass Transf. 2019, 132, 25–33.
(22)    Zhang, W.; Yang, J.; Xu, D. Development and Optimization of High Power Density Micro-Thermoelectric Generators. In Journal of Physics: Conference Series; IOP Publishing, 2018; Vol. 1052, p 012009. https://doi.org/10.1088/1742-6596/1052/1/012009.
(23)    Wang, X.; Yang, J.; Xiong, Y.; Huang, B.; Xu, T. T.; Li, D.; Xu, D. Measuring Nanowire Thermal Conductivity at High Temperatures. Meas. Sci. Technol. 2018, 29 (2), 025001. https://doi.org/10.1088/1361-6501/aa9389.
(24)    Liu, Y.; Lu, M.-C.; Xu, D. The Suppression Effect of Easy-to-Activate Nucleation Sites on the Critical Heat Flux in Pool Boiling. Int. J. Therm. Sci. 2018, 129, 231–237. https://doi.org/10.1016/j.ijthermalsci.2018.03.007.
(25)    Liu, Y.; Lu, M.-C.; Xu, D. Role of Easy-to-Activate Nucleation Sites in Pool Boiling. In International Heat Transfer Conference Digital Library; Begel House Inc., 2018. https://doi.org/10.1615/IHTC16.bae.022043.
(26)    Liu, C.; Xiong, Y.; Huang, Y.; Tan, X.; Li, L.; Xu, D.; Lin, Y.-H.; Nan, C.-W. FeVSb-Based Amorphous Films with Ultra-Low Thermal Conductivity and High ZT: A Potential Material for Thermoelectric Generators. J. Mater. Chem. A 2018, 6 (24), 11435–11445. https://doi.org/10.1039/C8TA03805H.
(27)    Huang, Y.; Xiong, Y.; Liu, C.; Li, L.; Xu, D.; Lin, Y.-H.; Nan, C.-W. Single-Crystalline 2D Erucamide with Low Friction and Enhanced Thermal Conductivity. Colloids Surf. Physicochem. Eng. Asp. 2018, 540, 29–35. https://doi.org/10.1016/j.colsurfa.2017.12.060.
(28)    Zhang, Q.; Cui, Z.; Wei, Z.; Chang, S. Y.; Yang, L.; Zhao, Y.; Yang, Y.; Guan, Z.; Jiang, Y.; Fowlkes, J.; Yang, J.; Xu, D.; Chen, Y.; Xu, T. T.; Li, D. Defect Facilitated Phonon Transport through Kinks in Boron Carbide Nanowires. Nano Lett. 2017, 17 (6), 3550–3555. https://doi.org/10.1021/acs.nanolett.7b00666.
(29)    Sun, J.; Yang, J.; Gao, Y.; Xu, D.; Li, D. Reference Channel-Based Microfluidic Resistance Sensing for Single Yeast Cell Volume Growth Measurement. Microfluid. Nanofluidics 2017, 21 (3), 33. https://doi.org/10.1007/s10404-017-1864-0.
(30)    Zhang, C.; Chen, W.; Tao, Y.; Zhao, W.; Cai, S.; Liu, C.; Ni, Z.; Xu, D.; Wei, Z.; Yang, J. Electron Contributions to the Heat Conduction across Au/Graphene/Au Interfaces. Carbon 2017, 115, 665–671. https://doi.org/10.1016/j.carbon.2017.01.051.
(31)    Zeng, X.; Xiong, Y.; Fu, Q.; Sun, R.; Xu, J.; Xu, D.; Wong, C.-P. Structure-Induced Variation of Thermal Conductivity in Epoxy Resin Fibers. Nanoscale 2017, 9 (30), 10585–10589. https://doi.org/10.1039/C7NR03717A.
(32)    Xiong, Y.; Tang, H.; Wang, X.; Zhao, Y.; Fu, Q.; Yang, J.; Xu, D. Significantly Enhanced Thermal Conductivity of Indium Arsenide Nanowires via Sulfur Passivation. Sci. Rep. 2017, 7 (1), 13252. https://doi.org/10.1038/s41598-017-13792-4.
(33)    Hippalgaonkar, K.; Seol, J. H.; Xu, D.; Li, D. Experimental Studies of Thermal Transport in Nanostructures. In Thermal Transport in Carbon-Based Nanomaterials; Elsevier, 2017; pp 319–357.
(34)    Fu, Q.; Xiong, Y.; Zhang, W.; Xu, D. A Setup for Measuring the Seebeck Coefficient and the Electrical Resistivity of Bulk Thermoelectric Materials. Rev. Sci. Instrum. 2017, 88 (9). https://doi.org/10.1063/1.4990634.
(35)    Zhou, A.; Wang, W.; Yao, X.; Yang, B.; Li, J.; Zhao, Q.; Wang, C.; Xu, D.; Ziolkowski, P.; Mueller, E. Impact of the Film Thickness and Substrate on the Thermopower Measurement of Thermoelectric Films by the Potential-Seebeck Microprobe (PSM). Appl. Therm. Eng. 2016, 107, 552–559. https://doi.org/10.1016/j.applthermaleng.2016.05.037.
(36)    Zhang, W.; Yang, J.; Xu, D. A High Power Density Micro-Thermoelectric Generator Fabricated by an Integrated Bottom-up Approach. J. Microelectromechanical Syst. 2016, 25 (4), 744–749. https://doi.org/10.1109/JMEMS.2016.2565504.
(37)    Tang, H.; Xiong, Y.; Zu, F.; Zhao, Y.; Wang, X.; Fu, Q.; Jie, J.; Yang, J.; Xu, D. Length-Dependent Thermal Transport in One-Dimensional Self-Assembly of Planar π-Conjugated Molecules. Nanoscale 2016, 8 (23), 11932–11939. https://doi.org/10.1039/C5NR09043A.
(38)    Tang, H.; Dou, K.; Xiong, Y.; Wang, F.; Zhao, Y.; Wang, X.; Fu, Q.; Yang, J.; Zhao, N.; Xu, D. Unusual Thermal Transport Behavior in Self-Assembled Fullerene Nanorods. RSC Adv. 2016, 6 (72), 67509–67513. https://doi.org/10.1039/C6RA14042D.
(39)    Wang, X.; Guo, R.; Xu, D.; Chung, J.; Kaviany, M.; Huang, B. Anisotropic Lattice Thermal Conductivity and Suppressed Acoustic Phonons in MOF-74 from First Principles. J. Phys. Chem. C 2015, 119 (46), 26000–26008. https://doi.org/10.1021/acs.jpcc.5b08675.
(40)    Chen, W.; Yang, J.; Wei, Z.; Liu, C.; Bi, K.; Xu, D.; Li, D.; Chen, Y. Effects of Interfacial Roughness on Phonon Transport in Bilayer Silicon Thin Films. Phys. Rev. B 2015, 92 (13), 134113. https://doi.org/10.1103/PhysRevB.92.134113.
(41)    Li, Y.; Wang, X.; Xu, D.; Chung, J. D.; Kaviany, M.; Huang, B. H 2 O Adsorption/Desorption in MOF-74: Ab Initio Molecular Dynamics and Experiments. J. Phys. Chem. C 2015, 119 (23), 13021–13031. https://doi.org/10.1021/acs.jpcc.5b02069.
(42)    Mo, J.; Li, L.; Zhou, J.; Xu, D.; Huang, B.; Li, Z. Fluid Infiltration Pressure for Hydrophobic Nanochannels. Phys. Rev. E 2015, 91 (3), 033022. https://doi.org/10.1103/PhysRevE.91.033022.
(43)    Zhou, A.; Fu, Q.; Zhang, W.; Yang, B.; Li, J.; Ziolkowski, P.; Mueller, E.; Xu, D. Enhancing the Thermoelectric Properties of the Electroplated Bi2Te3 Films by Tuning the Pulse Off-to-on Ratio. Electrochimica Acta 2015, 178, 217–224. https://doi.org/10.1016/j.electacta.2015.07.164.
(44)    Yang, J.; Tang, H.; Zhao, Y.; Zhang, Y.; Li, J.; Ni, Z.; Chen, Y.; Xu, D. Thermal Conductivity of Zinc Blende and Wurtzite CdSe Nanostructures. Nanoscale 2015, 7 (38), 16071–16078. https://doi.org/10.1039/C5NR04117A.
(45)    Xu, D.; Li, D. Molecular Dynamics Simulation Method. Encycl. Microfluid. Nanofluidics 2015, 2290–2297. https://doi.org/10.1007/978-1-4614-5491-5_1052.
(46)    Tang, H.; Wang, X.; Xiong, Y.; Zhao, Y.; Zhang, Y.; Zhang, Y.; Yang, J.; Xu, D. Thermoelectric Characterization of Individual Bismuth Selenide Topological Insulator Nanoribbons. Nanoscale 2015, 7 (15), 6683–6690. https://doi.org/10.1039/C5NR00917K.
(47)    Fu, Q.; Yang, J.; Chen, Y.; Li, D.; Xu, D. Experimental Evidence of Very Long Intrinsic Phonon Mean Free Path along the C-Axis of Graphite. Appl. Phys. Lett. 2015, 106 (3). https://doi.org/10.1063/1.4906348.
(48)    Wu, J.; Wang, X.; Chen, M.; Xu, D.; Yang, J. Estimation of Temperature Coefficient of Resistance for Microfabricated Platinum Thermometers in Thermal Conductivity Measurements of One-Dimensional Nanostructures. Meas. Sci. Technol. 2014, 25 (2), 025008. https://doi.org/10.1088/0957-0233/25/2/025008.
(49)    Sun, J.; Zhang, L.; Wang, J.; Feng, Q.; Liu, D.; Yin, Q.; Xu, D.; Wei, Y.; Ding, B.; Shi, X. Tunable Rigidity of (Polymeric Core)-(Lipid Shell) Nanoparticles for Regulated Cellular Uptake. Adv. Mater. Deerfield Beach Fla 2014, 27 (8), 1402–1407. https://doi.org/10.1002/adma.201404788.
(50)    Feser, J. P.; Xu, D.; Lu, H.; Zhao, Y.; Shakouri, A.; Gossard, A. C.; Majumdar, A. Reduced Thermal Conductivity in Er-Doped Epitaxial InxGa1- xSb Alloys. Appl. Phys. Lett. 2013, 103 (10). https://doi.org/10.1063/1.4820151.
(51)    Lam, S. L.; Wong, K.; Mohan, J.; Xu, D.; Lam, P. Classroom Communication on Mobile Phones–First Experiences with Web-Based ‘Clicker’System. In ASCILITE-Australian Society for Computers in Learning in Tertiary Education Annual Conference; Australasian Society for Computers in Learning in Tertiary Education, 2011; pp 763–777.
(52)    Bahk, J.-H.; Bian, Z.; Zebarjadi, M.; Zide, J. M. O.; Lu, H.; Xu, D.; Feser, J. P.; Zeng, G.; Majumdar, A.; Gossard, A. C.; Shakouri, A.; Bowers, J. E. Thermoelectric Figure of Merit of ( In 0.53 Ga 0.47 As ) 0.8 ( In 0.52 Al 0.48 As ) 0.2 III-V Semiconductor Alloys. Phys. Rev. B 2010, 81 (23), 235209. https://doi.org/10.1103/PhysRevB.81.235209.
(53)    Zide, J. M. O.; Bahk, J.-H.; Singh, R.; Zebarjadi, M.; Zeng, G.; Lu, H.; Feser, J. P.; Xu, D.; Singer, S. L.; Bian, Z. X. High Efficiency Semimetal/Semiconductor Nanocomposite Thermoelectric Materials. J. Appl. Phys. 2010, 108 (12). https://doi.org/10.1063/1.3514145.
(54)    Xu, D.; Feser, J. P.; Zhao, Y.; Lu, H.; Burke, P.; Gossard, A. C.; Majumdar, A. Thermal Conductivity Characterization and Modeling of P-Type Metal/Semiconductor Nanocomposites. In International Heat Transfer Conference; 2010; Vol. 49415, pp 525–529.
(55)    Ge, Y.; Xu, D.; Yang, J.; Chen, Y.; Li, D. Ionic Current through a Nanopore Three Nanometers in Diameter. Phys. Rev. E 2009, 80 (2), 021918. https://doi.org/10.1103/PhysRevE.80.021918.
(56)    Sun, J.; Vajandar, S. K.; Xu, D.; Kang, Y.; Hu, G.; Li, D.; Li, D. Experimental Characterization of Electrical Current Leakage in Poly(Dimethylsiloxane) Microfluidic Devices. Microfluid. Nanofluidics 2009, 6 (5), 589–598. https://doi.org/10.1007/s10404-008-0331-3.
(57)    Xu, D.; Leng, Y.; Chen, Y.; Li, D. Water Structures near Charged (100) and (111) Silicon Surfaces. Appl. Phys. Lett. 2009, 94 (20). https://doi.org/10.1063/1.3139745.
(58)    Vajandar, S. K.; Xu, D.; Sun, J.; Markov, D. A.; Hofmeister, W. H.; Li, D. Field-Effect Control of Electroosmotic Pumping Using Porous Silicon–Silicon Nitride Membranes. J. Microelectromechanical Syst. 2009, 18 (6), 1173–1183. https://doi.org/10.1109/JMEMS.2009.2031692.
(59)    Wu, X.; Kang, Y.; Wang, Y.; Xu, D.; Li, D.; Li, D. Microfluidic Differential Resistive Pulse Sensors. ELECTROPHORESIS 2008, 29 (13), 2754–2759. https://doi.org/10.1002/elps.200700912.
(60)    Chen, Y.; Ni, Z.; Wang, G.; Xu, D.; Li, D. Electroosmotic Flow in Nanotubes with High Surface Charge Densities. Nano Lett. 2008, 8 (1), 42–48. https://doi.org/10.1021/nl0718566.
(61)    Wang, Y.-N.; Kang, Y.; Xu, D.; Chon, C. H.; Barnett, L.; Kalams, S. A.; Li, D.; Li, D. On-Chip Counting the Number and the Percentage of CD4+ T Lymphocytes. Lab. Chip 2008, 8 (2), 309–315. https://doi.org/10.1039/B713932B.
(62)    Sridhar, M.; Xu, D.; Kang, Y.; Hmelo, A. B.; Feldman, L. C.; Li, D.; Li, D. Experimental Characterization of a Metal-Oxide-Semiconductor Field-Effect Transistor-Based Coulter Counter. J. Appl. Phys. 2008, 103 (10). https://doi.org/10.1063/1.2931026.
(63)    Xu, D.; Kang, Y.; Sridhar, M.; Hmelo, A. B.; Feldman, L. C.; Li, D.; Li, D. Wide-Spectrum, Ultrasensitive Fluidic Sensors with Amplification from Both Fluidic Circuits and Metal Oxide Semiconductor Field Effect Transistors. Appl. Phys. Lett. 2007, 91 (1). https://doi.org/10.1063/1.2753123.
(64)    Vajandar, S. K.; Xu, D.; Markov, D. A.; Wikswo, J. P.; Hofmeister, W.; Li, D. SiO2-Coated Porous Anodic Alumina Membranes for High Flow Rate Electroosmotic Pumping. Nanotechnology 2007, 18 (27), 275705. https://doi.org/10.1088/0957-4484/18/27/275705.
(65)    Sridhar, M.; Hmelo, A. B.; Feldman, L. C.; Xu, D.; Li, D. Molecular Dynamics Simulations of Bubble Formation in Nanochannels. In ASME International Mechanical Engineering Congress and Exposition; 2007; Vol. 4305, pp 1087–1092.
(66)    Chen, X.; Pan, W.; Meng, X.; Cheng, K.; Xu, D.-Y.; Wu, C. What Do We Know about Long Laminar Plasma Jets? Pure Appl. Chem. 2006, 78 (6), 1253–1264. https://doi.org/10.1351/pac200678061253.
(67)    Xu, D.; Li, D.; Leng, Y.; Chen, Y. Molecular Dynamics Simulation of Ion Distribution in Nanochannels. In ASME International Mechanical Engineering Congress and Exposition; 2006; Vol. 47756, pp 641–645.
(68)    Xu, D.-Y.; Chen, X.; Pan, W. Effects of Natural Convection on the Characteristics of a Long Laminar Argon Plasma Jet Issuing Horizontally into Ambient Air. Int. J. Heat Mass Transf. 2005, 48 (15), 3253–3255. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.039.
(69)    Xu, D.-Y.; Chen, X. Effects of Surrounding Gas on the Long Laminar Argon Plasma Jet Characteristics. Int. Commun. Heat Mass Transf. 2005, 32 (7), 939–946. https://doi.org/10.1016/j.icheatmasstransfer.2004.09.002.
(70)    Xu, D.-Y.; Wu, X.-C.; Chen, X. Motion and Heating of Non-Spherical Particles in a Plasma Jet. Surf. Coat. Technol. 2003, 171 (1–3), 149–156. https://doi.org/10.1016/S0257-8972(03)00259-7.
(71)    Xu, D.-Y.; Chen, X.; Cheng, K. Three-Dimensional Modelling of the Characteristics of Long Laminar Plasma Jets with Lateral Injection of Carrier Gas and Particulate Matter. J. Phys. Appl. Phys. 2003, 36 (13), 1583. https://doi.org/10.1088/0022-3727/36/13/324.
(72)    Chen, X.; Xu, D.-Y. Thermophoresis of a Near-Wall Particle at Great Knudsen Numbers. Aerosol Sci. Technol. 2002, 36 (1), 39–47. https://doi.org/10.1080/027868202753339069.

bottom of page